a relational understanding of number. Pupils who are fluent in number bonds (initially within ten and then within twenty) will be able to use the 'Make ten' strategy efficiently, enabling them to move away from laborious and unreliable counting strategies, such as 'counting all' and 'counting on'. Increasing fluency in efficient strategies will allow pupils to develop flexible and interlinked approaches to addition and subtraction. At a later stage, applying multiplication and division facts, rather than relying on skip-counting, will continue to develop flexibility with number.

Structures and contexts for calculations

There are multiple contexts (the word problem or real-life situation, within which a calculation is required) for each mathematical operation (i.e. addition) and, as well as becoming fluent with efficient calculating strategies, pupils also need to become fluent in identifying which operations are required. If they are not regularly exposed to a range of different contexts, pupils will find it difficult to apply their understanding of the four operations.
For each operation, a range of contexts can be identified as belonging to one of the conceptual 'structures' defined below.

The structure is distinct from both the operation required in a given problem and the strategy that may be used to solve the calculation. In order to develop good number sense and flexibility when calculating, children need to understand that many strategies (preferably the most efficient one for them!) can be used to solve a calculation, once the correct operation has been identified. There is often an implied link between the given structure of a problem context and a specific calculating strategy. Consider the following question: A chocolate bar company is giving out free samples of their chocolate on the street. They began the day with 256 bars and have given away 197. How many do they have remaining? The reduction context implicitly suggests the action of 'taking away' and might lead to a pupil, for example, counting back or using a formal algorithm to subtract 197 from 256 (seeing the question as $256-197=\square$). However, it is much easier to find the difference between 197 and 256 by adding on (seeing the question as $197+\square=256$). Pupils with well-developed number sense and a clear understanding of the inverse relationship between addition and subtraction will be confident in manipulating numbers in this way.

Every effort is made to include multiple contexts for calculation in the Mathematics Mastery materials but, when teachers adapt the materials (which is absolutely encouraged), having an awareness of the different structures and being sure to include a range of appropriate contexts, will ensure that pupils continue to develop their understanding of each operation. The following list should not be considered to be exhaustive but defines the structures (and some suggested contexts) that are specifically included in the statutory objectives and the non-statutory guidance of the national curriculum. Specific structures and contexts are introduced in the Mathematics Mastery materials at the appropriate time, according to this guidance.

Importance of knowns vs unknowns and using part-whole understanding
One of the key strategies that pupils should use to identify the correct operation(s) to solve a given problem (in day-to-day life and in word problems) is to clarify the known and unknown quantities and identify the relationships between them. Owing to the inverse relationship between addition and subtraction, it is better to consider them together as 'additive reasoning', since changing which information is unknown can lead to either addition or subtraction being more suitable to calculate a solution for the same context. For the same reason, multiplication and division are referred to as 'multiplicative reasoning'. Traditionally, approaches involving key vocabulary have been the main strategy used to identify suitable operations but owing to the shared underlying structures, key words alone can be ambiguous and lead to misinterpretation.

A more effective strategy is to encourage pupils to establish what they know about the relationship between the known and unknown values and if they represent a part or the whole in the problem, supported through the use of part-whole models and/or bar models. In the structures exemplified below, the knowns and unknowns have been highlighted. Where appropriate, the part-whole relationships have also been identified. Pupils should always be given opportunities to identify and discuss these, both when calculating and when problemsolving.

Standard and non-standard contexts

Using key vocabulary as a means of interpreting problems is only useful in what are in this document defined as 'standard' contexts, i.e. those where the language is aligned with the operation used to solve the problem. Take the following example:

First there were 12 people on the bus. Then three more people got on. How many people are on the bus now?

Pupils would typically identify the word 'more' and assume from this that they need to add the values together, which in this case would be the correct action. However, in non-standard contexts, identifying key vocabulary is unhelpful in identifying a suitable operation. Consider this question:

First there were 12 people on the bus and then some more people got on at the school. Now there are 15 people on the bus. How many people got on at the school?

Again the word 'more' would be identified, and a pupil may then erroneously add together 12 and 15. It is therefore much more helpful to consider known and unknown values and the relations between them.

Overexposure to standard contexts and lack of exposure to non-standard contexts will mean pupils are more likely to rely on 'key vocabulary' strategies, as they see that this works in most of the cases they encounter. It is therefore important, when adapting lesson materials, that non-standards contexts are used systematically, alongside standard contexts.

Additive reasoning

Change structures

augmentation (increasing)

where an existing value has been added to

Standard

First there were 12 people on the bus. Then three more people got on. How many people are on the bus now?

"I know both parts. My first part is twelve and my second part is three. I don't know the whole. I need to add the parts of twelve and three to find the whole."

$$
12+3=?
$$

Non-standard

First there were 12 people on the bus and then some more people got on at the school. Now there are 15 people on the bus. How
 many people got on at the school?
"I know my first part is twelve and I know the whole is 15. I don't know the value of the second part. To find the second part, I could add on from 12 to make 15 or I could subtract 12 from 15 ."

$$
12+?=15 \quad 15-12=?
$$

Non-standard

First there were some people on the bus then it stopped to pick up three more passengers at the bank. Altogether now there are 15 people on the bus. How many were people were on the bus before it stopped at the bank?
"I know the value of the second part is three and that the whole is 15 . I don't know the value of the first part. To find the first part, I could add on from three to 15 or I could subtract three from 15."

$$
?+3=15 \quad 15-3=?
$$

reduction (decreasing)

where an existing value has been reduced

Standard

First Kieran had six plates in his cupboard. Then he took two plates out to use for dinner. How many plates are in the cupboard now?

"I know the whole is six. I know one of the part that has been taken away is two. I don't know the other part. I need to subtract the known part, two, from the whole, six, to find the remaining part."

$$
6-2=? \quad 2+?=6
$$

Non-standard

First there were some plates in the cupboard. Then Kieran took two out for dinner. Now there are four left. How many plates were in the
 cupboard to start with?
"I know the part that has been taken away is two and the part that is left is four. I don't know the whole. I can find the whole by adding the parts of four and two."

$$
?-2=4 \quad 2+4=?
$$

Non-standard

First there were six plates in the cupboard. Then Kieran took some out for dinner. There are now four plates left in the cupboard. How many did Kieran take out?
"I know the whole is six and the remaining part is four. I don't know the part that was taken away. To find the part that was taken away I can add on from four to make six or I could subtract four from six."

$$
6-?=4 \quad 6-4=?
$$

Note: the 'first... then... now' structure is used heavily in KS1 to scaffold pupils' understanding of change structures. Once pupils are confident with the structures, such linguistic scaffolding
can be removed, and question construction can be changed to expose pupils to a greater range of nuance in interpreting problems. For example, the second and third reduction problems could be reworded as follows:

Kieran took two plates out of his cupboard for dinner. There were four left. How many plates were in the cupboard to begin with?

There were six plates in the cupboard before Kieran took some out for dinner. If there were four plates left in the cupboard, how many did Kieran take out?

These present the same knowns and unknowns, and therefore the same bar models and resulting equations to solve the problems; however, the change in wording makes them more challenging to pupils who have only worked with a 'first... then... now' structure so far.

Part-whole structures

Combination (aggregation)/partitioning

combining two or more discrete quantities/splitting one quantity into two or more sub-quantities
Hakan and Sally have made a stack of their favourite books. Four books belong to Hakan, three to Sally. How many books are in the stack altogether?
"I know both parts. One part is four and the other part is three. I don't know the whole. I need to add the parts of three and four to find the whole."

$$
4+3=? \quad 3+4=?
$$

(Only one problem has been written for combination as, owing to the commutativity of addition, the only change in question wording would be to swap Hakan and Sally's names. The resulting bar model and calculation would be identical.)

Sally and Hakan have made a stack of their favourite books. There are seven books altogether. If three of them are Sally's, how many belong to Hakan?
"I know the whole is seven and that one of the parts is three. I don't know the other part. I need to add on from three to make seven or subtract three from seven to find the other
 part."

$$
3+?=7 \quad 7-3=?
$$

Sally and Hakan have made a stack of their favourite books. There are seven books altogether. If four of them are Hakan's, how many belong to Sally?
"I know the whole is seven and that one of the parts is four. I don't know the other part. I need to add on from four to make seven or subtract four from seven to find the other part."

$$
4+?=7 \quad 7-4=?
$$

Note: all part-whole contexts are considered to be 'standard', as the language of part-whole is unambiguous.

Comparison structures

Comparison structures involve a relationship between two quantities; their relationship is expressed as a difference. The structures vary by which of the values are known/unknown (the larger quantity, the smaller quantity and/or their difference). Part-whole language is not used here because the context contains not one single 'whole', but instead two separate quantities and it is the relationship between them being considered. Comparison bar models are therefore used to model these structures, which are known to be the most challenging for pupils to interpret.

Smaller quantity and larger quantity are known (comparative difference)

Standard

Navin has saved £19 from his pocket money. Sara has saved £31 from her pocket money. How much more has Sara saved than Navin? or How much less has Navin saved than Sara?
"I know one quantity is 19 and the other quantity is 31 . I don't know the difference. To find the difference I could add on from 19 to make 31 or I could subtract 19 from 31 ."

$$
19+?=31 \quad 31-19=?
$$

Smaller quantity and difference are known (comparative addition)

Standard

Ella has six marbles. Robin has three more than Ella. How many marbles does Robin have?
"I know the smaller quantity is six. I know the difference is three. I don't know the larger quantity. To find the larger quantity I need to add three to six."

$$
6+3=?
$$

Non-standard

Samir and Lena are baking shortbread but Lena's recipe uses 15 g less butter than Samir's. If Lena needs to use $25 g$ of butter, how much does Samir need?
"I know the smaller quantity is 25 . I know the difference between the quantities is 15 . I don't know the larger quantity. To find the larger quantity I need to add 15 to 25 ."

$$
?-15=25 \quad 25+15=?
$$

Larger quantity and difference are known (comparative subtraction)

Non-standard

Ella has some marbles. Robin has three more than Ella and he has nine marbles in total. How many marbles does Ella have?
"I know the larger quantity is nine. I know the difference between the quantities is three. I don't know the smaller quantity. To find the smaller quantity I need to add on from three to make nine or subtract three from nine."

$$
?+3=9 \quad 9-3=?
$$

Standard

Samir's shortbread recipe uses 40 g of butter. Lena's recipe uses 15 g less butter. How much butter does Lena need?
"I know one quantity is 40 . I know the difference between the quantities is 15 . I don't know the smaller quantity but I know it is 15 less than 40 . To find the smaller quantity, I need to subtract 15 from 40 ."

$$
40-15=? \quad ?+15=40
$$

Multiplicative reasoning

Repeated grouping structures	
repeated addition groups (sets) of equal value are combined or repeatedly added There are four packs of pencils. Each contains five pencils. How many pencils are there? "I know there are four equal parts and that each part has a value of five. I don't know the value of the	repeated subtraction (grouping) groups (sets) of equal value are partitioned from the whole or repeatedly subtracted There are 12 counters. If each child needs three counters to play the game, how many children can play? "I know the whole is twelve and that the value of each equal part is three. To find the number of equal parts, I need to know how many threes are in twelve." $3 \times ?=12 \quad 12 \div 3=?$
five." $\begin{gathered} 5+5+5+5=? \\ 5 \times 4=? \end{gathered}$	sharing (into equal groups) the whole is shared into a known number (must be a positive integer) of equal groups (sets) Share twelve counters equally between three children. How many counters does each child get? "I know the whole is twelve and the number of equal parts is three. I don't know the value of each part. To find the value of each part, I need to know what goes into twelve three times." $? \times 3=12 \quad 12 \div 3=?$

Cartesian product of two measures

correspondence

calculating the number of unique combinations that can be created from two (or more) sets

"I know how many hats there are, and I know how many tops there are. I don't know the number of different outfits that can be created. To find the number of outfits, I need to find how many different tops can be worn with each hat or how many different hats can be worn with each top."

$$
4 \times 3=? \quad 3 \times 4=?
$$

Progression in calculations
 Year 1

National curriculum objectives linked to addition and subtraction

These objectives are explicitly covered through the strategies outlined in this document:

- Add and subtract one-digit and two-digit numbers to 100, including zero (N.B. Year 1 N.C. objective is to do this with numbers to 20).
- Add and subtract numbers using concrete objects, pictorial Representations, and mentally, including: a two-digit number and ones, a two-digit number and tens, 2 two-digit numbers; add 3 one-digit numbers (Year 2).
- Represent and use number bonds and related subtraction facts within 20.
- Given a number, identify 1 more and 1 less.
- Show that addition of two numbers can be done in any order (commutative) but subtraction of one number from another cannot (Year 2).
- Recognise the inverse relationship between addition and subtraction and use this to solve missing number problems (Year 2).

The following objectives should be planned for lessons where new strategies are being introduced and developed:

- Read, write and interpret mathematical statements involving addition (+), subtraction (-) and equal (=) signs.
- Solve one-step problems that involve addition and subtraction, using concrete objects and pictorial Representations, and missing number problems, such as $7=\square-9$.
- Solve problems with addition and subtraction:
- Using concrete objects and pictorial Representations, including those involving numbers, quantities and measures
- Applying their increasing knowledge of mental methods

Teachers should refer to the definitions and guidance on the structures for addition and subtraction to provide a range of appropriate real-life contexts for calculations.

Year 1 Addition

Strategy \& guidance	Representations
Count all Joining two groups and then recounting all objects using one-toone correspondence	$3+4=7$
Counting on As a strategy, this should be limited to adding small quantities only (1, 2 or 3) with pupils understanding that counting on from the greater number is more efficient.	
Part-whole Teach both addition and subtraction alongside each other, as pupils will use this model to identify the inverse relationship between them. This model begins to develop the understanding of the commutativity of addition, as pupils become aware that the parts will make the whole in any order.	$\begin{aligned} & 10=6+4 \\ & 10-6=4 \\ & 10-4=6 \\ & 10=4+6 \end{aligned}$

| Strategy \& guidance |
| :--- | :--- |
| Regrouping ten |
| ones to make ten |
| This is an essential skill |
| that will support column |
| addition later on. |

Strategy \& guidance	Representations
'2 more than 5 is equal to 7. ' ' 8 is 3 more than 5.' Over time, pupils should be encouraged to rely more on their number bonds knowledge than on counting strategies.	A^{-9} $5+2=$
Adding three single digit numbers (make ten first) Pupils may need to try different combinations before they find the two numbers that make 10. The first bead string shows 4, 7 and 6. The colours of the bead string show that it makes more than ten. The second bead string shows 4, 6 and then 7. The final bead string shows how they have now been put together to find the total.	$\begin{aligned} \frac{4+7+6}{10} & =10+7 \\ & =17 \end{aligned}$

Strategy \& guidance
Partitioning to add (no regrouping)

Place value grids and Dienes blocks could be used as shown in the diagram before moving onto pictorial
Representations.
Dienes blocks should always be available, as the main focus in Year 1 is the concept of place value rather than mastering the procedure.

When not regrouping, partitioning is a mental strategy and does not need formal recording in columns. This representation prepares them for using column addition with formal recording.
Introducing column
method for addition, regrouping only

Dienes blocks and place value grids should be used as shown in the diagrams. Even when working pictorially, pupils should have access to Dienes blocks.

See additional guidance on MyMatery for extra guidance on this strategy.

Strategy \& guidance	Representations		
Adding multiples of ten			
Using the vocabulary of 1 ten, 2 tens, 3 tens etc. alongside 10, 20, 30 is	$50=30+20$		
important, as pupils			
need to understand that			
it is a ten and not a one			
that is being added and			
they need to understand			
that a '2' digit in the tens			
column has a value of			
twenty.		\quad	It also emphasises the
:---			
link to known number			
facts. E.g. '2 + 3 is			
equal to 5. So 2 tens +3			
tens is equal to 5 tens.			

Year 1 Subtraction

Strategy \& guidance	Representations
Taking away from the ones When this is first introduced, the concrete representation should be based upon the diagram. Real objects should be placed on top of the images as one-to-one correspondence so that pupils can take them away, progressing to representing the group of ten with a tens rod and ones with ones cubes.	
Counting back Subtracting 1, 2, or 3 by counting back Pupils should be encouraged to rely on number bonds knowledge as time goes on, rather than using counting back as their main strategy.	

value
understanding. This
will support pupils
when they later use
the column method.

Taking away
from the tens

Pupils should
identify that they
can also take away
from the tens and
get the same
answer.
This reinforces their
knowledge of
number bonds to 10
and develops their
application of
number bonds for
mental strategies.

Partitioning to
subtract without
regrouping

Dienes blocks on a
place value chart
(developing into
using images on the
chart) could be
used, as when
adding 2-digit
numbers,
reinforcing the main
concept of place
value for Year 1.

When not
regrouping,
partitioning is a
mental strategy and
does not need formal recording in

© Ark Curriculum Plus 2023. This can be printed out and photocopied by Mathematics Mastery registered users only.

columns. This representation prepares them for using column subtraction with formal recording.		
Subtracting multiples of ten Using the vocabulary of 1 ten, 2 tens, 3 tens etc. alongside 10, 20, 30 is important as pupils need to understand that it is a ten not a one that is being taken away.	$40=60-20$	
Column method with regrouping This example shows how pupils should work practically when being introduced to this method. There is no formal recording in columns in Year 1 but this practical work will prepare pupils for formal methods in Year 2. See additional guidance on MyMastery to support with this method.		

National Curriculum objectives linked to multiplication and division

These objectives are explicitly covered through the strategies outlined in this document:

- Solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial Representations and arrays with the support of the teacher.

Teachers should refer to definitions and guidance on the structures for multiplication and division to provide a range of appropriate real-life contexts for calculations.

Year 1 Multiplication

Strategy \& guidance		Representations
Skip counting in multiples of 2, 5, 10 from zero		
The representation for the amount of groups supports pupils' understanding of the written equation. So two groups of 2 are 2, 4. Or five groups of 2 are 2, 4, $6,8,10$.		
Count the groups as pupils are skip counting.		
Number lines can be used in the same way as the bead string.	5,10,15,20	
Pupils can use their fingers as they are skip counting.		

with the array representation and language of equal groups. .

Pupils will not use formal multiplication and division equations until Y2.

Solve multiplication problems using concrete or pictorial Representations and skip counting.

Pupils explore finding the total number of objects arranged in equal groups.

They begin by doing this with concrete items then move on to pictorial Representations of the items before relating this to familiar
Representations such as the array and part whole model.

Language of equal groups should be used throughout so that pupils build an understanding of multiplicative structures.

How many are there altogether?

There are four equal groups. There are five pens in each group.
$5,10,15,10$
The whole is 20. There are 20 pens altogether.

There are three equal groups of five.
$5,10,15$. The whole is 15.

Year 1 Division

Strategy \& guidance	Representations
Sharing objects into groups (Partitive division) Pupils should become familiar with division problems. Language of sharing into equal groups should be used.	
The division symbol and formal equations are not introduced until Year 2.	Share ten into two equal groups. Grouping objects (Quotative division) Pupils become familiar with grouping into equal groups. They do this firstly concretely, then pictorially by drawing rings around pictorial representations.

Progression in calculations
 Year 2

National Curriculum objectives linked to addition and subtraction

These objectives are explicitly covered through the strategies outlined in this document:

- Add and subtract numbers using concrete objects, pictorial Representations, and mentally, including: a two-digit number and ones; a two-digit number and tens; 2 two-digit numbers; adding three one-digit numbers.
- Add and subtract numbers mentally, including: a three-digit number and ones; a three-digit number and tens; a three-digit number and hundreds (Year 3).
- Recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100 .
- Find 10 or 100 more or less than a given number (Year 3).
- Show that addition of two numbers can be done in any order (commutative) but subtraction of one number from another cannot.
- Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems.
- Add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction (Year 3).

The following objectives should be planned for lessons where new strategies are being introduced and developed:

- Solve problems with addition and subtraction: using concrete objects and pictorial Representations, including those involving numbers, quantities and measures; apply increasing knowledge of mental and written methods.
- Solve problems, including missing number problems, using number facts, place value and more complex addition and subtraction. (Year 3)

Teachers should refer to the definitions and guidance on the structures for addition and subtraction to provide a range of appropriate real-life contexts for calculations.

Year 2 Addition

\begin{tabular}{|c|c|}
\hline Strategy \& guidance \& Representations \\
\hline \begin{tabular}{l}
Part-part-whole \\
Pupils explore the different ways of making 20. They can do this with all numbers using the same Representations. \\
This model develops knowledge of the inverse relationship between addition and subtraction and is used to find the answer to missing number problems.
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& 20=17+3 \\
\& 20=3+17 \\
\& 20-3=17 \\
\& 20-17=3
\end{aligned}
\]

\square $=20$

20 - \square
\square

\square $=20$

20 - \square $=$ \square
\square $+1=16$

$16-1=$ \square

$1+$ \square $=16$

16 - \square $=1$
\end{tabular}

\hline Counting on in tens and hundreds \&

\hline
\end{tabular}

Strategy \＆guidance	Representations							
Using known facts to create derived facts Dienes blocks should be used alongside pictorial and abstract Representations when introducing this strategy．	$\because+\because$ $=\therefore$ $3+4=7$ $\\|+\\|$ $=\\| \\| \\|$ leads to $\\|\\|+40=70$ $\square \square+\square \square$ $=\square \square$ leads to $\square \square \square$ ロロロ $300+400=700$							
Partitioning one number，then adding tens and ones Pupils can choose themselves which of the numbers they wish to partition．Pupils will begin to see when this method is more efficient than adding tens and taking away the extra ones，as shown．								
Round and adjust （sometimes known as a compensating strategy） Pupils will develop a sense of efficiency with this method，beginning to see when rounding and adjusting is more efficient than adding tens and then ones．	$22+17=39$							

Strategy \& guidance	Representations
Make ten strategy	
How pupils choose to apply this strategy is up to them; however, the	5 -

focus should always be on efficiency.

It relies on an understanding that numbers can be partitioned in different ways in order to easily make a multiple of ten.

Partitioning to add

 without regroupingAs in Year 1, this is a mental strategy rather than a formal written method. Pupils use the Dienes blocks (and later, images) to represent 3-digit numbers but do not record a formal written method if there is no regrouping.
 pupils make pictorial representations.

As in Year 1, the focus is to develop a strong understanding of place value.

Year 2 Subtraction

Strategy \& guidance	Representations
Counting back in multiples of ten and one hundred	
Using known number facts to create derived facts Dienes blocks should be used alongside pictorial and abstract Representations when introducing this strategy, encouraging pupils to apply their knowledge of number bonds to add multiples of ten and 100.	$8-4=4$ leads to $80-40=40$ leads to $800-400=400$
Subtracting tens and ones Pupils must be taught to partition the second number for this strategy as partitioning both numbers can lead to errors if regrouping is required.	$53-12=41$

Strategy \& guidance	Representations
Round and adjust (sometimes known as a compensating strategy) Pupils must be taught to round the number that is being subtracted. Pupils will develop a sense of efficiency with this method, beginning to identify when this method is more efficient than subtracting tens and then ones.	
Make ten How pupils choose to apply this strategy is up to them. The focus should always be on efficiency. It relies on an understanding that numbers can be partitioned in different ways in order to subtract to a multiple of ten. Pupils should develop an understanding that the parts can be added in any order.	

Strategy \& guidance	Representations
Partitioning to subtract without regrouping As in Year 1, the focus is to develop a strong understanding of place value and pupils should always be using concrete manipulatives alongside the pictorial. Formal recording in columns is unnecessary for this mental strategy. It prepares them to subtract with 3-digits when regrouping is required.	hundreds tens ones \square $=$ $=$ \square $263-121=142$
Column method with regrouping The focus for the column method is to develop a strong understanding of place value and concrete manipulatives should be used alongside. Pupils are introduced to calculations that require two instances of regrouping (initially from tens to one and then from hundreds to tens). E.g. 232-157 and are given plenty of practice using concrete and pictorial representations alongside their formal written methods, ensuring that important steps are not missed in the recording. Caution should be exercised when	

Strategy \& guidance	
introducing calculations	
requiring 'regrouping to	
regroup' (e.g. 204 -	
137) ensuring ample	
teacher modelling using	
concrete manipulatives	
and images.	

National Curriculum objectives linked to multiplication and division

These objectives are explicitly covered through the strategies outlined in this document:

- Recall and use multiplication and division facts for the 2, 5 and 10 multiplication tables, including recognising odd and even numbers.
- Recall and use multiplication and division facts for the 3 and 4 multiplication tables (Year 3).
- Show that multiplication of two numbers can be done in any order (commutative) but division of one number by another cannot.

The following objectives should be planned for lessons where new strategies are being introduced and developed:

- Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (\times), division (\div) and equal (=) signs.
- Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods and multiplication and division facts, including problems in context.

Teachers should refer to definitions and guidance on the structures for multiplication and division to provide a range of appropriate real-life contexts for calculations.

Year 2 Multiplication

|
 guidance |
| :--- | :--- |
| Making and
 describing equal
 and unequal groups |
| Concrete manipulatives |
| and images of objects |
| begin to be organised |
| into rows or columns of |
| equal length thus |
| creating a rectangular |
| array. Pupils should be |
| encouraged to describe |
| what they can see |
| referring to equal |
| grouping and |
| encourage flexibility in |
| the two ways the array |
| can be described. |
| It is important to |
| discuss with pupils how |
| arrays can be useful. |
| Pupils move towards |
| attaching the abstract |
| notation of |
| multiplication and |
| division, applying their |
| skip counting skills to |
| identify the multiples of |
| the $2 x$, $5 \times$ and $10 x$ |
| tables. |
| The relationship |
| between multiplication |
| and division also |
| begins to be |
| demonstrated. |

Strategy \& guidance	Representations
Drawing around equal groups to show multiplication is commutative Pupils build on their understand that an array can represent different equations and that, as multiplication is commutative, the order of the multiplication does not affect the answer. Encourage pupils to compare two arrays representing the same problem and identify that the whole remains the same by rotating the array to sit one on top of the other. Describing and annotating the one array to show the different ways of describing the equal groups supports their understanding.	Robin has two Ishmael has four bags with four bags with two sweets in each. "I can see two equal parts of four. The whole is eight." Or "I can see four equal parts of two. The whole is eight." $2 \times 4=8 \text { and } 4 \times 2=8$

 guidance	
Use of an array to establish the inverse relationship between multiplication and division	There are five tables. Each table seats four chid dren. 20 children can sit down.
Pupils use arrays of manipulatives and images to represent multiplicative contexts where all information is provided. Pupils should	Represen

> 20 children need to sit down. Each table seats four children.
> There are five tables.

"There are five equal parts, each with a value of four. The whole is 20."
"I know the whole is 20 and the value of each part is four. The number of parts needed is five."

$4 \times 5=20$ and $5 \times 4=20$
$20 \div 4=5$ and $20 \div 5=4$ array; two multiplication and two division.

Adding and

 subtracting equal groups to support skip countingPupils apply their knowledge of equal groups and apply this to skip counting to help find the totals of

"There are three equal groups of two. The whole is six."

$$
2 \times 3=6
$$

Strategy \& guidance	Representations
repeated additions with $2 x, 5 x$ and 10x The purpose is to recognise the relationship between the number of groups and the group size therefore ensure pupils are clear on the consistent factor being the explored. Pupils should always describe the array before then attaching the abstract equation to it.	"I'm going to add another "I'm going to remove an equal group of two. There are equal group of two. There are four equal groups of two. two equal groups of two. The The whole is eight." whole is four." $2 \times 4=8$ $2 \times 2=4$
	"I can see three groups of two plus one more group of two." $2 \times 3+2 \times 1$

At this stage they double the $2 x$ table facts to derive the $4 \times$ table facts and should be encouraged to focus in on the similarities and differences between the arrays and the relationship common factor and the multiplier.
"The whole is eight. Eight shared between two equal groups is equal to four. One half of eight is equal to four."

Strategy \& guidance	Representations
Representing known facts to derive new facts using and combining arrays and on a numberline (3 x) Pupils build on their knowledge of adding equal groups, skip counting and repeated addition to support flexibility in understanding. Pupils create two arrays for two known facts, either using manipulatives or images, before combining to represent a derived fact from the three times table. Pupils move on to connect the arrays to jumps of equal value on a number line, connecting this to the abstract equations.	"I know this is 2×3 because there are two equal groups of three." "To find out what 3×3 is we need to add another equal group of three." $2 \times 3+1 \times 3=3 \times 3$ "Three multiplied by three is equal to nine." or

Year 2 Division

Strategy \& guidance	Representations
Use of an array to establish the inverse relationship between multiplication and division and derive facts	
Pupils build on their understanding of division and an array to derive facts, connecting their fractional knowledge to division to derive six facts for each array.	"I can see two equal groups of five which is equal to ten."
	"One half of ten is equal to five."

National Curriculum objectives linked to addition and subtraction

These objectives are explicitly covered through the strategies outlined in this document:

- add and subtract numbers mentally, including:
- a three-digit number and ones
- a three-digit number and tens
- a three-digit number and hundreds
- add and subtract numbers with up to four digits, using formal written methods of columnar addition and subtraction (four digits is Year 4)
- find 10 or 100 more or less than a given number
- find 1000 more or less than a given number (Year 4)
- estimate the answer to a calculation and use inverse operations to check answers

The following objectives should be planned for lessons where new strategies are being introduced and developed:

- solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction

Teachers should refer to definitions and guidance on the structures for addition and subtraction to provide a range of appropriate real-life contexts for calculations.

Year 3 Addition \& Subtraction

Strategy \& guidance
Add and subtract numbers mentally, including: - a three-digit number and ones; - a three-digit number and tens; - a three-digit number and hundreds

Pupils learn that this is an appropriate strategy when they are able to use known and derived number facts or other mental strategies to complete mental calculations with accuracy.

To begin with, some pupils will prefer to use this strategy only when there is no need to regroup, using number facts within 10 and derivations. More confident pupils might choose from a range of mental strategies that avoid written algorithms, including (but not exhaustively):

- known number facts within 20 ,
- derived number facts,
- 'Make ten',
- round and adjust

See Year 2 guidance for exemplification of these - the use of concrete manipulatives other than Dienes blocks is important in reinforcing the use of these strategies.

It is important that pupils are given plenty of (scaffolded) practice at choosing their own strategies to complete calculations efficiently and accurately. Explicit links need to be made between familiar number facts and the calculations that they can be useful for and pupils need to be encouraged to aim for efficiency.

Representations
It is important to model the mental strategy using concrete manipulatives in the first instance and pupils should be able to exemplify their own strategies using manipulatives if required, with numbers appropriate to the unit they are working on (3-digit numbers in Units 1 \& 4; 4-digit numbers in Unit 13). However, pupils should be encouraged to use known facts to derive answers, rather than relying on counting manipulatives or images.

No regrouping

$345+30$	$274-50$
$1128+300$	$1312-300$
$326+342$	$856-724$

Strategy \& guidance
Written column method for calculations that require regrouping with up to 4-digits

Dienes blocks should be used alongside the pictorial Representations during direct teaching and can be used by pupils both for support and challenge. Place value counters can also be introduced at this stage.

This work revises and reinforces ideas from Key Stage 1, including the focus on place value - see Year 2 exemplification.

Direct teaching of the columnar method should require at least one element of regrouping, so that pupils are clear about when it is most useful to use it. Asking them 'Can you think of a more efficient method?' will challenge them to apply their number sense / number facts to use efficient mental methods where possible.

As in Year 2, pupils should be given plenty of practice with calculations that require multiple separate instances of regrouping. In Year 3 they become more familiar with calculations that require 'regrouping to regroup'. Understanding must be secured through the considered use of manipulatives and images, combined with careful use of language.

Pupils should be challenged as to whether this is the most efficient method, considering whether mental methods (such as counting on, using known number facts, round and adjust etc.) may be likelier to produce an accurate solution.

Pupils requiring support might develop their confidence in the written method using numbers that require no regrouping.

See MyMastery for extra guidance on this strategy.

Representations
As for the mental strategies, pupils should be exposed to concrete manipulatives modelling the written calculations and should be able to represent their written work pictorially or with concrete manipulatives when required.
Again, they should be encouraged to calculate with known and derived facts and should not rely on counting images or manipulatives.

$5+6=11$ so I will have 11 ones which I regroup for 1 ten and 1 one.

Regrouping (including multiple separate instances)
$672+136$ $734-82$
$468+67$
831-76
$275+386$
435-188
'Regrouping to regroup'
204-137
1035-851

Strategy \& guidance	Representations
Find 10, 100 more or less than a given number	$142+100=242$
As pupils become familiar with numbers up to	
1000, place value should be emphasised and	
comparisons drawn between adding tens,	
hundreds (and, in the last unit of the Summer	
term, thousands), including use of concrete	
manipulatives and appropriate images.	

National Curriculum objectives linked to multiplication and division

These objectives are explicitly covered through the strategies outlined in this document:

- count from 0 in multiples of $4,8,50$ and 100
- recall and use multiplication and division facts for the 3,4 , and 8 multiplication tables
- write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental methods
- solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects

Teachers should refer to definitions and guidance on the structures for multiplication and division to provide a range of appropriate real-life contexts for calculations.

Year 3 Multiplication

Strategy \& guidance	Representations
Doubling to derive new multiplication facts Pupils continue to make use of the idea that facts from easier times tables can be used to derive facts from related times tables using doubling as a strategy. Specifically, in Year 3, pupils will explore the link between the 4 and 8 times table This builds on the doubling strategy from Year 2.	When we double one factor, the product will be double the size.
Skip counting in multiples of $2,3,4$, 5, 8 and 10 Rehearsal of previously learnt tables as well as new content for Year 3 should be incorporated into transition activities and practised regularly.	$\begin{array}{lllllllllll}0 & 3 & 6 & 9 & 12 & 15 & 18 & 21 & 24 & 27 & 30\end{array}$ $\bigcirc \bigcirc \bigcirc \bigcirc$ $3,6,9,12,18$

Strategy \& guidance	Representations
Use of Cuisennaire with arrays and bar models to establish commutativity and inverse relationship between multiplication and division In these contexts pupils are able to identify all the equations in a fact family.	Three groups of five is equal to five groups of three. $3 \times 5=5 \times 3$
Ten times the size Pupils' work on this must be firmly based on concrete Representations the language of ten times greater must be well modelled and understood to prevent the numerical misconception of 'adding a zero'.	For every one I need to use a ten. 10 is ten times the size of one.

Strategy \& guidance	Representations	
Multiplying by 10 When you multiply whole numbers by 10 this is equivalent to making a number 10 times the size. When you multiply by ten, each part is ten times the size. The ones become tens, the tens become hundreds, etc. When multiplying whole numbers, a zero holds a place so that each digit has a value that is ten times greater.	Hundreds 5 made 50 is t 5 mu	Tens Ten times the size $\times 10$ imes the size is 50 . mes the size of 5 .
Using known facts for multiplying by multiples of 10 Pupils' growing understanding of place value allows them to make use of known facts to derive multiplications using scaling by 10 . It is important to use tables with which they are already familiar (i.e. not 7 or 9 tables in Year 3)	$3 \times 2=6$	$30 \times 2=60$

 guidance
Multiplication of 2- digit numbers with partitioning (regrouping)

Using concrete manipulatives and later moving to using images that represent them, supports pupils' early understanding, leading towards formal written methods in Year 4.

Once again, this is a mental strategy, which they may choose to support with informal jottings, including a full grid, as exemplified here.

Pupils must be encouraged to make use of their known multiplication facts and their knowledge of place value to calculate, rather than counting manipulatives.

1) First, I need to partition my 2-digit number into tens and ones.
2) I need to multiply my ones by \qquad . There are \qquad ones.

I can regroup my ones into \qquad or I do not need to regroup my ones.
3) I need to multiply my tens by \qquad There are \qquad tens.

I can regroup my tens into \qquad or I do not need to regroup.
4) I can add the tens and ones to get the product. \qquad multiplied by \qquad is \qquad -.

Year 3 Division

| Strategy \& Guidance | Representations | | |
| :--- | :--- | :--- | :--- | :--- |
| Dividing by 10 | | | |
| When you divide by ten, each | | | |
| part is ten times smaller or one | | | |
| tenth of the sise. The hundreds | | | |
| become tens and the tens | | | |
| become ones. Each digit is in a | | | |
| place that gives it a value that is | | | |
| ten times smaller. | | | |,

Progression in calculations
Year 4

National curriculum objectives linked to addition and subtraction

These objectives are explicitly covered through the strategies outlined in this document:

- add and subtract numbers with up to four digits, using the formal written methods of columnar addition and subtraction where appropriate
- find 1000 more or less than a given number
- estimate and use inverse operations to check answers to a calculation
N.B. There is no explicit reference to mental calculation strategies in the programmes of study for Year 4 in the national curriculum. However, with an overall aim for fluency, appropriate mental strategies should always be considered before resorting to formal written procedures, with the emphasis on pupils making their own choices from an increasingly sophisticated range of strategies.

The following objectives should be planned for lessons where new strategies are being introduced and developed:

- solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why
- solve simple measure and money problems involving fractions and decimals to two decimal places

Y4 Addition \& Subtraction

Strategies \& Guidance	Representations
Count forwards and backwards in steps of 10, 100 and 1000 for any number up to 10000. Pupils should count on and back in steps of ten, one hundred and one thousand from different starting points. These should be practised regularly, ensuring that boundaries where more than one digit changes are included. Count forwards and backwards in tenths and hundredths	Pay particular attention to boundaries where regrouping happens more than once and so more than one digit changes. $\text { E.g. } 990+10 \text { or } 19.9+0.1$
Using known facts and knowledge of place value to derive facts. Add and subtract multiples of 10, 100 and 1000 mentally Pupils extend this knowledge to mentally adding and subtracting multiples of 10, 100 and 1000. Counting in different multiples of 10, 100 and 1000 should be incorporated into transition activities and practised regularly.	
Adding and subtracting by partitioning one number and applying known facts. By Year 4 pupils are confident in their place value knowledge and are calculating mentally both with calculations that do not require regrouping and with those that do.	See Year 3 guidance on mental addition \& subtraction, remembering that use of concrete manipulatives and images in both teaching and reasoning activities will help to secure understanding and develop mastery.

Strategies \& Guidance	Representations
Round and adjust Pupils should recognise that this subtracting near multiples of ten. They should apply their knowledge of rounding.	
It is very easy to be confused about how to adjust and so visual Representations and logical reasoning are essential to success with this strategy.	$352927-4$
Build flexibility by completing the	
same calculation in a different	
order.	

Strategies \& Guidance	Representatio
Written column methods for addition Place value counters are a useful manipulative for representing the steps of the formal written method. These should be used alongside the written layout to ensure conceptual understanding and as a tool for explaining. This method and the language to use are best understood through the $P D$ videos available on MyMastery.	Thousands Hundreds Tens Ones $\begin{array}{r} 5273 \\ +\quad 541 \\ \hline 5814 \end{array}$

Strategies \& Guidance	Representations
Written column methods for subtraction Place value counters are a useful manipulative for representing the steps of the formal written method. These should be used alongside the written layout to ensure conceptual understanding and as a tool for explaining. This method and the language to use are best understood through the PD videos available on the MyMastery.	Thousands Hundreds Tens Ones 1000 1000 1000 100 100 $\begin{array}{r} 427152 \\ -\quad 3271 \\ \hline 1081 \end{array}$
Calculating with decimal numbers Assign different values to Dienes equipment. If a Dienes 100 block has the value of 1 , then a tens rod has a value of 0.1 and a ones cube has a value of 0.01 . These can then be used to build a conceptual understanding of the relationship between these. Place value counters are another useful manipulative for representing decimal numbers. All of the calculation strategies for integers (whole numbers) can be used to calculate with decimal numbers.	

National Curriculum objectives linked to multiplication and division

These objectives are explicitly covered through the strategies outlined in this document:

- count from 0 in multiples of $6,7,9,25$ and 1000
- recall and use multiplication and division facts for multiplication tables up to 12 $\times 12$
- write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods
- recognise and use factor pairs and commutativity in mental calculations
- use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers
- multiply two-digit and three-digit numbers by a one-digit number using formal written layout
- find the effect of dividing a one- or two-digit number by 10 and 100, identifying the value of the digits in the answer as ones, tenths and hundredths.

The following objectives should be planned for lessons where new strategies are being introduced and developed:

- solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects.

Y4 Multiplication

Strategies \& Guidance	Representations
Multiplying by 10 and 100 Pupils begin to think about multiplication as scaling. When you multiply whole numbers by 10 and 100 this is equivalent to making a number 10 or 100 times the size. When you multiply by ten, each part is ten times the size. The ones become tens, the tens become hundreds, etc. When multiplying whole numbers, a	One hundred is one hundred times the size of one one. One thousand is one hundred times the size of one ten.
has a value that is ten times greater. Repeated multiplication by ten will build an understanding of multiplying by 100 and 1000 .	Five made ten times the size is 50 . 50 is ten times the size of five. Five multiplied by ten is 50
	Thousands Hundreds Tens Ones 26 made 100 times the size is 2,600 . 26 multiplied by 100 is equal to 2,600 . First, we had 26 ones. Now we have 26 hundreds.

Strategies \& Guidance	Representations
Using known facts and place value for mental multiplication involving multiples of 10 and 100 Pupils use their growing knowledge of multiplication facts, place value and derived facts to multiply mentally. Emphasis is placed on understanding the relationship (10 times or 100 times greater) between a known number fact and one to be derived, allowing far larger 'fact families' to be derived from a single known number	\square * \square 7 Θ \square factor factor product \square 7 \times 3 \square $=$ \square 21 Factors are numbers that are multiplied together to make another number. A product is the number made when other numbers are multiplied.
Knowledge of commutativity (that multiplication can be completed in any order) is used to find a range of related facts.	If I know that three ones multiplied by seven ones is equal to 21, then I know that three ones multiplied by seven tens is equal to 210. One of the factors is ten times greater, so the product is ten times greater.

Strategies \& Guidance	Representations
Multiplying by partitioning one number and multiplying each part Pupils build on mental multiplication strategies and develop an explicit understanding of the distributive law of multiplication. They begin to multiply a two-digit number by a one-digit number by splitting arrays and area models. They recognise that factors can be partitioned in ways other than into '10 and a bit'. They begin to explore compensating strategies and factorisation to find the most efficient solution to a calculation. This illustrates the distributive property of multiplication: $a \times(b+c)=a \times b+a \times c$ and $a \times(b-c)=a \times b-a \times c$	14×6 14 34×6 34 $\begin{aligned} 34 \times 6 & =30 \times 6+4 \times 6 \\ & =180+24 \\ & =204 \end{aligned}$

Strategies \& Guidance
Mental multiplication of three 1- digit numbers, using the associative law

Pupils first learn that multiplication can be performed in any order, before applying this to choose the most efficient order to complete calculations, based on their increasingly sophisticated number facts and place value knowledge.

Short multiplication of a 2-digit number by a 1-digit number

To begin with, pupils are presented with calculations that require no regrouping and then progress to regrouping from the ones to the tens. They learn how to use the expanded written algorithm alongside Dienes blocks to support their conceptual understanding. They then build on, and apply their understanding to the compact written algorithm.

Expanded layout

| | | 2 |
| :--- | :--- | :--- | 3

If there are ten or more ones, we regroup the ones into tens and ones.

If there are ten or more tens, we regroup the tens into hundreds and tens.

\section*{| Strategies \& Guidance |
| :---: |
| Short multiplication of 3-digit | number by 1-digit number}

To begin with pupils are presented with calculations that require no regrouping or only regrouping from the ones to the tens. Their conceptual understanding is supported by the use of place value counters, both during teacher demonstrations and during their own practice.

With practice pupils will be able to regroup in any column, including from the hundreds to the thousands, including being able to multiply numbers containing zero and regrouping through multiple columns in a single calculation.

Hundreds	Tens	Ones
(-): $)^{\text {(2) }}$ (1)	(1)	(1) (1)
(-): $)^{(2)}$	(1)	(1)
(:): $)$ (:)	(1)	(1) (1)

To calculate 512×3, represent the number 512. Multiply each part by 3 , regrouping as needed.

When we multplly by zero, the product is zero.

Y4 Division

Strategies \& Guidance	Representations
Derived facts Pupils use their growing knowledge of multiplication facts, place value and derived facts to multiply mentally. Understanding of the inverse relationship between multiplication and division allows corresponding division facts to be derived.	3×7 and $21 \div 3$ If I know $42 \div 7=6$, then I know:
Division of 2-digit numbers by a 1-digit number Pupils use their placevalue knowledge to divide a two-digit number by a one-digit number through partitioning the two-digit number into tens and ones, dividing the parts by the one-digit number, then adding the partial quotients. Pupils then progress to partitioning the two-digit number into multiples of the divisor.	$56 \div 4$

Strategies \& Guidance
$\begin{array}{l}\text { Short division of 2- } \\ \text { digit numbers by a 1- } \\ \text { digit number }\end{array}$

Pupils start with dividing 2digit numbers by 2, 3 and 4, where no regrouping is required. Place value counters are used to model the algorithm and help pupils relate it to what they already know about division and to develop conceptual understanding.

They progress to calculations that require regrouping in the tens column.

Pupils learn that division is the only operation for which the formal algorithm begins with the most significant digit (on the left).

$75 \div 3$
Two groups of three tens can be made from seven tens.
There is one ten remaining.

Five groups of three ones can be made from 15 ones, with no ones remaining.
75 divided by three is equal to 25 .

Strategies \& Guidance
Short division of a 3- digit number by a 1- digit number

Pupils use place value counters alongside the written method of short division, beginning with examples that do not involve regrouping and progressing to multiple regrouping.

Pupils recognise that no regrouping is required when the dividend has digits that are multiples of the divisor.

Pupils progress to short division where the dividend has digits smaller than the divisor.

Division of a one- or $\quad 24 \div 10=2.4$ two-digit number by 10 and 100, identifying the value of the digits in the answer as ones, tenths and hundredths

When you divide by ten, each part is ten times smaller. The tens become ones and the ones become tenths. Each digit is in a place that gives it a value that is ten times smaller.
$438 \div 6$
7 hundreds $\div 6=1$ hundred remainder 1 hundred
1 hundred = 10 tens
plus 2 more tens $=12$ tens
12 tens $\div 6=2$ tens
6 ones $\div 6=1$ one

$$
\begin{aligned}
4 \text { hundreds } \div 6 & =0 \text { remainder } 4 \text { hundreds } \\
4 \text { hundreds } & =40 \text { tens } \\
\text { plus } 3 \text { more tens } & =43 \text { tens } \\
43 \text { tens } \div 6 & =7 \text { tens remainder } 1 \text { ten } \\
1 \text { ten } & =10 \text { ones } \\
\text { plus } 8 \text { more ones } & =18 \text { ones } \\
18 \text { ones } \div 6 & =3 \text { ones }
\end{aligned}
$$

	1	2	1	
6	7	${ }^{1} 2$	6	

$24=-10=2.4$
$24 \div 100=0.24$

Progression in calculations
 Year 5 + Year 6

Year 5 and Year 6 are together because the calculation strategies used are broadly similar, with Year 6 using larger and smaller numbers. Any differences for Year 6 are highlighted in red.

National Curriculum objectives linked to integer addition and subtraction
These objectives are explicitly covered through the strategies outlined in this document:

- add and subtract numbers mentally with increasingly large numbers
- add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction)
- use negative numbers in context, and calculate intervals across zero
- perform mental calculations, including with mixed operations and large numbers
- use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy

The following objectives should be planned for lessons where new strategies are being introduced and developed:

- use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy
- solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why
- solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign.

Y5 and Y6 Addition \& Subtraction

Strategies \& Guidance	Representations
Using known facts and understanding of place value to derive Using the following language makes the logic explicit: I know three ones plus four ones is equal to seven ones. Therefore, three ten thousands plus four ten thousands is equal to seven ten thousands. In Year 5 extend to multiples of 10000 and 100 000 as well as tenths, hundredths and thousandths. In Year 6 extend to multiples of one million. These derived facts should be used to estimate and check answers to calculations.	$\begin{array}{\|l} 20000+40000=60000 \\ 40000+20000=60000 \\ 60000-40000=20000 \\ 60000-20000=40000 \end{array}$ $\begin{aligned} & 0.6=0.2+0.4 \\ & 0.6=0.4+0.2 \\ & 0.2=0.6-0.4 \\ & 0.4=0.6-0.2 \end{aligned}$

Strategies \& Guidance
Partitioning one number and applying known facts to add.

Pupils can use this strategy mentally or with jottings as needed.

Pupils should be aware of the range of choices available when deciding how to partition the number that is to be added.

They should be encouraged to count on from the number of greater value as this will be more efficient. However, they should have an understanding of the commutative law of addition, that the parts can be added in any order.

Pupils have experience with these strategies with smaller numbers from previous years and so the focus should be on developing flexibility and exploring efficiency.

With place value counters, represent the larger number and then add each place value part of the other number. The image above shows the thousands being added.

Represent pictorially with an empty numberline:

Partitioning in different ways (non-canonical partitioning):

Extend the 'Make ten' strategy (see guidance in Y 1 or Y 2) to count on to a multiple of 10.
$6785+2325=6785+15+200+2110$

The strategy can be used with decimal numbers, Make one:
$14.7+3.6=14.7+0.3+3.3=15+3.3$

Strategies \& Guidance
Subtraction by partitioning and applying known facts.

Pupils can use this strategy mentally or with jottings as needed.

Pupils should be aware of the range of choices available when deciding how to partition the number that is to be subtracted.

Pupils have experience with these strategies with smaller numbers from previous years and so the focus should be on developing flexibility and exploring efficiency.

Representations
Partitioning into place value amounts (canonical partitioning):

$75221-14300=75221-10000-4000-300$

Represent pictorially with a number line, starting on the right and having the arrows jump to the left:

Develop understanding that the parts can be subtracted in any order and the result will be the same:

Partitioning in different ways (non-canonical partitioning):

Extend the 'Make ten' strategy (see guidance in Y1 or Y2) to count back to a multiple of 10 .

Strategies \& Guidance	Representations
Calculate difference by "counting back" It is interesting to note that finding the difference is reversible. For example, the difference between 5 and 2 is the same as the difference between 2 and 5. This is not the case for other subtraction concepts.	$75221-14300$ Place the numbers either end of a numberline and work out the difference between them. Select efficient jumps. Finding the difference is efficient when the numbers are close to each other: $9012-8976$
Calculate difference by "counting on" Addition strategies can be used to find difference.	$75221-14300$ Finding the difference is efficient when the numbers are close to each other $9012-8976$

Strategies \& Guidance	Representations
Round and adjust Addition and subtraction using compensation Pupils should recognise that this strategy is useful when adding and subtracting near multiples of ten. They should apply their knowledge of rounding. It is very easy to be confused about how to adjust and so visual Representations and logical reasoning are essential to success with this strategy.	Addition $54128+9987=54128+10000-13=64128-13$ Pupils should realise that they can adjust first: Subtraction $78051-9992=78051-10000+8=68051+8$ Pupils should realise that they can adjust first: $78051-4960=78051+40-5000=78692-5000$
Near doubles Pupils should be able to double numbers up to 100 and use this to derive doubles for multiples of ten as well as decimal numbers. These facts can be adjusted to calculate near doubles.	$\begin{aligned} & 160+170=\text { double } 150+10+20 \\ & 160+170=\text { double } 160+10 \text { or } 160+170=\text { double } \\ & 170-10 \\ & 2.5+2.6=\text { double } 2.5+0.1 \end{aligned}$

Strategies \& Guidance	Representations
Partition both numbers and combine the parts	$7230+5310=12000+500+40$
Pupils should be secure with this method for numbers up to 10 000, using place value counters or Dienes to show conceptual understanding.	$7000+5000=12000$
If multiple regroupings are required, then pupils should consider using the column method.	Pupils should be aware that the parts can be added in any order.

Exemplification of this method and the language to use are best understood through viewing the PD videos available on MyMastery.

For this method start with the digit of least value because if regrouping happens it will affect the digits of greater value.

Combine the counters in each column and regroup as needed:

Decimal numbers:

Strategies \& Guidance
Written column methods for subtraction

In Year 5, pupils are expected to be able to use formal written methods to subtract whole numbers with more than four digits as well as working with numbers with up to three decimal places.

Pupils should be given plenty of practice with calculations that require multiple separate instances of regrouping.

In Year 3 and 4 they become more familiar with calculations that require 'regrouping to regroup'. Understanding must be secured through the considered use of manipulatives and images, combined with careful use of language.

Pupils should think about if this is the most efficient method, considering whether mental strategies (such as counting on, using known number facts, compensation etc.) may be likelier to produce an accurate solution.

Exemplification of this method and the language to use are best understood through viewing the $P D$ videos available on MyMastery.

The term regrouping should be the language used. You can use the terms 'exchange' with subtraction but it needs careful consideration.

You can regroup 62 as 50 and 12 (5 tens and 12 ones) instead of 60 and 2 (6 tens and 12 ones).

Or you can 'exchange' one of the tens for 10 ones resulting in 5 tens and 12 ones.

If you have exchanged, then the number has been regrouped.

Progression in calculations
Year $5+$ Year 6
National Curriculum objectives linked to multiplication and division

These objectives are explicitly covered through the strategies outlined in this document:

- multiply and divide whole numbers by 10,100 and 1000
- multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digit numbers
- multiply and divide numbers mentally drawing upon known facts
- divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context
- multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication
- divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context
- divide numbers up to 4 digits by a two-digit number using the formal written method of short division where appropriate, interpreting remainders according to the context
- multiply one-digit numbers with up to two decimal places by whole numbers
- use written division methods in cases where the answer has up to two decimal places

The following objectives should be planned for lessons where new strategies are being introduced and developed:

- solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes
- solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign
- use their knowledge of the order of operations to carry out calculations involving the four operations
- solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why
- solve problems involving addition, subtraction, multiplication and division
- solve problems involving the relative sizes of two quantities where missing values can be found by using integer multiplication and division facts.

Y5 and Y6 Multiplication

Strategies \& Guidance	Representations							
Multiply and divide whole numbers and those involving decimals by 10, 100 and 1,000 Through the context of measures, pupils learn to multiply and divide whole numbers by 10, 100 and 1,000 alongside place value counters and charts. Avoid saying that you "add a zero" when multiplying by 10, 100 and 1,000 and instead use the language of place holder. Use place value counters and charts to visualise and then notice what happens to the digits.	Ruby walked 130 m . Her mum walked 100 times as far. How far did Ruby's mum walk?							
	Ten thous		Thousands		Tens		Ones	
				(10)				
	(1amo		$\underset{(2000)}{(12000}$					
	$13,000 \mathrm{~m}$ is one hundred times as far as 130 m . When you multiply by one hundred, each part is ten times the size. The ones become hundreds, the tens become thousands, etc. To find the inverse of one hundred times as many, divide by one hundred.							
	mousons	Hunderes	$\mathrm{as}^{\text {tens }}$	ones	tentrs	nundeaths	Inousondths	
					-	(\%)	(2.) em	0.132
				(1)	(ㄷ) (1)	(-) $)^{(1)}$		1.32
				(1) ()	- ©			13.2
	$1.32 \div 10=0.132$ 0.132 is one-tenth the size of 1.32 . $13.2 \div 100=0.132$ 0.132 is one-hundredth the size of 13.2 When you divide by ten, each part is ten times smaller. The hundreds become tens and the tens become ones. Each digit is in a place that gives it a value that is ten times smaller.							

Strategies \& Guidance	Representations
Using known facts and place value to derive multiplication facts Emphasis is placed on understanding the relationship (10 times or 100 times greater) between a known number fact and one to be derived, allowing far larger 'fact families' to be derived from a single known number fact. Knowledge of commutativity is further extended and applied to find a range of related facts. Pupils should work with decimals with up to two decimal places. These derived facts should be used to estimate and check answers to calculations.	If one factor is made one hundred times the size, the product will become one hundred times the size. 30 If both factors are made ten times the size, the product will be 100 times the size.

Strategies \& Guidance

Representations

These are the multiplication facts pupils should be able to derive from a known fact.

2100000		700000×3	70000×30	7000×300	700×3000	70×30000	7×300000
210000		70000×3	7000×30	700×300	70×3000	7×30000	
21000		7000×3	700×30	70×300	7×3000		
2100		700×3	70×30	7×300			
210		70×3	7×30				
21	$=$	7×3					
2.1		0.7×3	7×0.3				
0.21		0.07×3	0.7×0.3	7×0.03			
0.021		0.007×3	0.07×0.3	0.7×0.03	7×0.003		

Doubling and halving

Pupils should experience doubling and halving larger and smaller numbers as they expand their understanding of the number system.

Doubling and halving can then be used in larger calculations.

Multiply by 4 by doubling and doubling again
e.g. $16 \times 4=32 \times 2=64$

Divide by 4 by halving and halving again
e.g. $104 \div 4=52 \div 2=26$

Multiply by 8 by doubling three times
e.g. $12 \times 8=24 \times 4=48 \times 2=96$

Divide by 8 by halving three times
e.g. $104 \div 8=52 \div 4=26 \div 2=13$

Y5 and Y6 Division

Strategies \& Guidance	Representations		
Using knowledge of multiples to divide Using an area model to partition the whole into multiples of the divisor (the number you are dividing by).	$112 \div 8=80 \div 8+32 \div 8$		

Strategies \& Guidance	Representations
Long division Dividing a 4-digit number by a 2-digit number Follow the language structures of the short division strategy. Instead of recording the regrouped amounts as small digits the numbers are written out below. This can be easier to work with when dividing by larger numbers. If dividing by a number outside of their known facts, pupils should start by recording some multiples of that number to scaffold.	

